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Motivation for compressed sensing

Original image x: all wavelets Approximation x̂: only large-coefficient wavelets

Data x Measure Compress Transmit

Approximation x̂ Reconstruct Receive

Conventional paradigm for data acquisition:

1. Measure full data (take picture with many pixels)

2. Compress (discard the small coefficients)

Wasteful: can we measure only the significant part?
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Motivation for compressed sensing

Original image x: all wavelets Approximation x̂: only large-coefficient wavelets

Data x Compressed Sensing Transmit

Approximation x̂ Reconstruct Receive

Compressed sensing paradigm for data acquisition:

1. & 2. Directly acquire compressed data

Compress, e.g. discarding the insignificant coefficients

Wasteful: can we measure only the significant part?
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Compressed sensing: formal setup
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• Wish to recover x ∈ RN fully from m � N non-adaptive

linear measurements, i.e. Mx = y ∈ Rm
• Impossible in general: underdetermined system

• x has k � N nonzero entries: exact recovery is possible

• Otherwise, give an approximation x̂ to x containing the

k � N significant entries

Questions:

1. Good measurement matrix M?

2. Recovery algorithm (how to approximate x using y)?

2/13



Efficient compressed sensing schemes

1. Measurement matrix M? 2. Recovery algorithm?

Properties of a good scheme:

(P1) few measurements, ideally m = O(k polylogN)

(P2) fast recovery algorithm, ideally O(k polylogN)

(P3) few random bits to construct M, ideally o(N)

(P4) x̂ approximates x accurately via an “`p/`q” error guarantee:

‖x− x̂‖p ≤ Ck1/p−1/q min
k-sparse xk

‖x− xk‖q

for some real constants C and 1 ≤ q ≤ p ≤ 2

Lower bounds for nontrivial schemes by Ba et al. (2010) :

(P4) =⇒ measurements, runtime Ω(k log(N/k))
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(Non)uniform recovery

Nonuniform recovery: For each x ∈ RN , generate a matrix M
randomly and independently. With high probability, the error

guarantee (P4) is satisfied.

Uniform recovery: Generate a matrix M randomly. With high

probability, the error guarantee (P4) is satisfied for all x ∈ RN .
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Principal previous schemes

(P1): number of measurements (P2): recovery algorithm runtime

(P3): number of random bits (P4): error guarantee of x̂

Schemes good across (P1)–(P4) simultaneously?

Lower bounds k log(N/k) k log(N/k) ? `2/`2

- - k log k · logN k log k · logN log k · log (k logN) `2/`1

Paper (P1) (P2) (P3) (P4)

Cormode & Muthukrishnan (2006) k log3N k log3N Ω(N) `2/`2

Gilbert et al. (2012) k log(N/k) k log≥2N Ω(N) `2/`2

Nakos & Song (2019) k log(N/k) k log2(N/k) Ω(N) `2/`2

Scheme 1, Iwen (2014) k log k · logN k log k · logN Ω(N) `2/`1

Scheme 2, Iwen (2014) k log2N k log2N log k · log (k logN) `2/`1

Our Result k log k · logN k log k · logN log k · log (k logN) `2/`1

The complexities are subject to O-factor, unless stated with Ω.
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Our scheme: combining advantages of Iwen’s schemes

(P1): number of measurements (P2): recovery algorithm runtime

(P3): number of random bits (P4): error guarantee of x̂

Schemes good across (P1)–(P4) simultaneously?

Lower bounds k log(N/k) k log(N/k) ? `2/`2

- - k log k · logN k log k · logN log k · log (k logN) `2/`1

Paper (P1) (P2) (P3) (P4)

Cormode & Muthukrishnan (2006) k log3N k log3N Ω(N) `2/`2

Gilbert et al. (2012) k log(N/k) k log≥2N Ω(N) `2/`2

Nakos & Song (2019) k log(N/k) k log2(N/k) Ω(N) `2/`2

Scheme 1, Iwen (2014) k log k · logN k log k · logN Ω(N) `2/`1

Scheme 2, Iwen (2014) k log2N k log2N log k · log (k logN) `2/`1

Our scheme k log k · logN k log k · logN log k · log (k logN) `2/`1

The complexities are subject to O-factor, unless stated with Ω.
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How to combine advantages of Iwen’s schemes?

Measurement matrix:

M =

[
Mid

Mest

]
← identify indices of significant entries

← estimate values of entries

Algorithm 1 Recovery Algorithm

Input: M =

[
Mid

Mest

]
, y =

[
yid

yest

]
=Mx, and k ∈ [N]

Output: an approximation x̂ to x

1: S = Identify(yid) . indices of significant entries

2: x̂ = Estimate(Mest, yest,S , k) . estimate entries indexed by S

Our scheme: same algorithm, same Mest, improved Mid
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Our identification matrix: subsample from a better binary matrix

Our scheme: same algorithm, same Mest, improved Mid

Iwen’s and our Mid is generated by

(i) randomly subsampling rows of “incoherent” binary matrix,

(ii) then taking “columnwise Kronecker product” with the

“bit-tester”

Our Mid: subsample rows from a better incoherent binary matrix
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Incoherent binary matrix

{0, 1}t×N is (w , α)-coherent matrix

1. each column contains at least w 1s,

2. each pair of distinct columns has dot product at most α.

Questions:

1. Lower bound on t?

2. Upper bound on t?

3. Construction?

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1




at least two 1s

dot product at most 1

(2, 1)-coherent matrix with N = 6
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Our lower bound on the row count

{0, 1}t×N is (w , α)-coherent matrix

1. each column contains at least w 1s,

2. each pair of distinct columns has dot product at most α.

1. Lower bound on t? 2. Upper bound on t? 3. Construction?

Our lower bound: t = Ω(w2/α)

Proof idea (using coding theory):

• Bound must apply to the case with exactly w 1s.

• Translate into binary constant-weight code:

(t, 2(w − α),w)2-code of size N

• Rearrange classical bound by Johnson (1962): t = Ω(w2/α)
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Iwen’s upper bound on row count and constructions

t = Ω(w 2/α)

1) Scheme 1 (best (P2), fastest recovery algorithm)

• Randomly generated itself

• t = O(w2/α), order-optimal!

2) Scheme 2 (best (P3), fewest random bits)

• Explicit construction, based on RIP matrix by DeVore (2007)

• t = O(w2)

(w , α)-coherent matrix Performance of scheme

Scheme Row count Explicit (P1) (P2) (P3)

Iwen’s scheme 1 O(w2/α) 7 good poor

Iwen’s scheme 2 O(w2) X poor good

Combining the advantages?

11/13



Our matrix construction: explicit and order-optimal

Advantage in (w , α)-coherent matrix Corresponding advantage(s) in scheme

Good row count few measurements (P1), fast runtime (P2)

Explicit (structured) few random bits (P3)

Combining the advantages?

(w , α)-coherent matrix Performance of scheme

Scheme Row count Explicit (P1) (P2) (P3)

Iwen’s scheme 1 O(w2/α) 7 good poor

Iwen’s scheme 2 O(w2) X poor good

Our scheme O(w2/α) X good good

Idea: based on disjunct matrix by Porat & Rothschild (2011)
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Conclusion and open question

M =

[
Mid

Mest

]
← subsample from a better (w , α)-coherent matrix

← same

(P1): number of measurements (P2): recovery algorithm runtime

(P3): number of random bits (P4): error guarantee of x̂

Lower bounds k log(N/k) k log(N/k) ? `2/`2

- - k log k · logN k log k · logN log k · log (k logN) `2/`1

Paper (P1) (P2) (P3) (P4)

Cormode & Muthukrishnan (2006) k log3N k log3N Ω(N) `2/`2

Gilbert et al. (2012) k log(N/k) k log≥2N Ω(N) `2/`2

Nakos & Song (2019) k log(N/k) k log2(N/k) Ω(N) `2/`2

Scheme 1, Iwen (2014) k log k · logN k log k · logN Ω(N) `2/`1

Scheme 2, Iwen (2014) k log2N k log2N log k · log (k logN) `2/`1

Our scheme k log k · logN k log k · logN log k · log (k logN) `2/`1

The complexities are subject to O-factor, unless stated with Ω.

Question: (P1) and (P2) both O(k log(N/k)) ? Impossible?
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