Construction of binary matrices for near-optimal compressed sensing

Ivan Lau
Department of Mathematics, Simon Fraser University
IEEE International Symposium on Information Theory 2021

Motivation for compressed sensing

Original image \mathbf{x} : all wavelets

Approximation $\widehat{\mathbf{x}}$: only large-coefficient wavelets

Conventional paradigm for data acquisition:

1. Measure full data (take picture with many pixels)
2. Compress (discard the small coefficients)

Wasteful: can we measure only the significant part?

Motivation for compressed sensing

Original image \mathbf{x} : all wavelets

Approximation \widehat{x} : only large-coefficient wavelets

Compressed sensing paradigm for data acquisition:

1. \& 2. Directly acquire compressed data

Wasteful: can we measure only the significant part?

Compressed sensing: formal setup

- Wish to recover $\mathbf{x} \in \mathbb{R}^{N}$ fully from $m \ll N$ non-adaptive linear measurements, i.e. $\mathcal{M} \mathbf{x}=\mathbf{y} \in \mathbb{R}^{m}$
- Impossible in general: underdetermined system
- \mathbf{x} has $k \ll N$ nonzero entries: exact recovery is possible
- Otherwise, give an approximation $\widehat{\mathbf{x}}$ to \mathbf{x} containing the $k \ll N$ significant entries

Questions:

1. Good measurement matrix \mathcal{M} ?
2. Recovery algorithm (how to approximate \mathbf{x} using \mathbf{y})?

Efficient compressed sensing schemes

1. Measurement matrix \mathcal{M} ? 2. Recovery algorithm?

Properties of a good scheme:
(P1) few measurements, ideally $m=O$ (k poly $\log N$)
(P2) fast recovery algorithm, ideally O (k polylog N)
(P3) few random bits to construct \mathcal{M}, ideally $o(N)$
(P4) $\widehat{\mathbf{x}}$ approximates \mathbf{x} accurately via an " ℓ_{p} / ℓ_{q} " error guarantee:

$$
\|\mathbf{x}-\widehat{\mathbf{x}}\|_{p} \leq C k^{1 / p-1 / q} \min _{k \text {-sparse } \mathbf{x}_{k}}\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{q}
$$

for some real constants C and $1 \leq q \leq p \leq 2$

Lower bounds for nontrivial schemes by Ba et al. (2010) :
$(P 4) \Longrightarrow$ measurements, runtime $\Omega(k \log (N / k))$

(Non)uniform recovery

Nonuniform recovery: For each $\mathbf{x} \in \mathbb{R}^{N}$, generate a matrix \mathcal{M} randomly and independently. With high probability, the error guarantee (P4) is satisfied.

Uniform recovery: Generate a matrix \mathcal{M} randomly. With high probability, the error guarantee (P4) is satisfied for all $\mathbf{x} \in \mathbb{R}^{N}$.

Principal previous schemes

(P1): number of measurements (P2): recovery algorithm runtime
(P3): number of random bits (P4): error guarantee of \widehat{x} Schemes good across (P1)-(P4) simultaneously?

Lower bounds	$k \log (N / k)$	$k \log (N / k)$	$?$	ℓ_{2} / ℓ_{2}
Paper	$\mathbf{(P 1)}$	$\mathbf{(P 2)}$	$\mathbf{(P 3)}$	$\mathbf{(P 4)}$
\begin{tabular}{\|c	c	c	c	}
\hline				
\end{tabular}				
Cormode \& Muthukrishnan (2006)	$k \log ^{3} N$	$k \log ^{3} N$	$\Omega(N)$	ℓ_{2} / ℓ_{2}
Gilbert et al. (2012)	$k \log (N / k)$	$k \log ^{\geq 2} N$	$\Omega(N)$	ℓ_{2} / ℓ_{2}
Nakos \& Song (2019)	$k \log (N / k)$	$k \log ^{2}(N / k)$	$\Omega(N)$	ℓ_{2} / ℓ_{2}
Scheme 1, Iwen (2014)	$k \log k \cdot \log N$	$k \log ^{2} k \cdot \log N$	$\Omega(N)$	ℓ_{2} / ℓ_{1}
Scheme 2, Iwen (2014)	$k \log ^{2} N$	$k \log ^{2} N$	$\log k \cdot \log (k \log N)$	ℓ_{2} / ℓ_{1}

The complexities are subject to O-factor, unless stated with Ω.

Principal previous schemes

(P1): number of measurements (P2): recovery algorithm runtime
(P3): number of random bits (P4): error guarantee of \widehat{x} Schemes good across (P1)-(P4) simultaneously?

Lower bounds	$k \log (N / k)$	$k \log (N / k)$	$?$	ℓ_{2} / ℓ_{2}
Paper	$\mathbf{(P 1)}$	$\mathbf{(P 2)}$	$\mathbf{(P 3)}$	$\mathbf{(P 4)}$
\begin{tabular}{\|c	c	c	c	}
\hline				
\end{tabular}				
Cormode \& Muthukrishnan (2006)	$k \log ^{3} N$	$k \log ^{3} N$	$\Omega(N)$	ℓ_{2} / ℓ_{2}
Gilbert et al. (2012)	$k \log (N / k)$	$k \log ^{22} N$	$\Omega(N)$	ℓ_{2} / ℓ_{2}
Nakos \& Song (2019)	$k \log (N / k)$	$k \log ^{2}(N / k)$	$\Omega(N)$	ℓ_{2} / ℓ_{2}
Scheme 1, Iwen (2014)	$k \log k \cdot \log N$	$k \log k \cdot \log N$	$\Omega(N)$	ℓ_{2} / ℓ_{1}
Scheme 2, Iwen (2014)	$k \log ^{2} N$	$k \log ^{2} N$	$\log k \cdot \log (k \log N)$	ℓ_{2} / ℓ_{1}

The complexities are subject to O-factor, unless stated with Ω

Our scheme: combining advantages of Iwen's schemes

(P1): number of measurements (P2): recovery algorithm runtime
(P3): number of random bits (P4): error guarantee of \widehat{x} Schemes good across (P1)-(P4) simultaneously?

Lower bounds	$k \log (N / k)$	$k \log (N / k)$?	ℓ_{2} / ℓ_{2}
Paper	(P1)	(P2)	(P3)	(P4)
Cormode \& Muthukrishnan (2006)	$k \log ^{3} N$	$k \log ^{3} N$	$\Omega(N)$	ℓ_{2} / ℓ_{2}
Gilbert et al. (2012)	$k \log (N / k)$	$k \log ^{\geq 2} N$	$\Omega(N)$	ℓ_{2} / ℓ_{2}
Nakos \& Song (2019)	$k \log (N / k)$	$k \log ^{2}(N / k)$	$\Omega(N)$	ℓ_{2} / ℓ_{2}
Scheme 1, Iwen (2014)	$k \log k \cdot \log N$	$k \log k \cdot \log N$	$\Omega(N)$	ℓ_{2} / ℓ_{1}
Scheme 2, Iwen (2014)	$k \log ^{2} N$	$k \log ^{2} N$	$\log k \cdot \log (k \log N)$	ℓ_{2} / ℓ_{1}
Our scheme	$k \log k \cdot \log N$	$k \log k \cdot \log N$	$\log k \cdot \log (k \log N)$	ℓ_{2} / ℓ_{1}

The complexities are subject to O-factor, unless stated with Ω.

How to combine advantages of Iwen's schemes?

Measurement matrix:
$\mathcal{M}=\left[\frac{\mathcal{M}_{\mathrm{id}}}{\mathcal{M}_{\text {est }}}\right] \begin{aligned} & \leftarrow \text { identify indices of significant entries } \\ & \leftarrow \text { estimate values of entries }\end{aligned}$

Algorithm 1 Recovery Algorithm

Input: $\mathcal{M}=\left[\frac{\mathcal{M}_{\text {id }}}{\mathcal{M}_{\text {est }}}\right], \mathbf{y}=\left[\frac{\mathbf{y}_{\text {id }}}{\mathbf{y}_{\text {est }}}\right]=\mathcal{M} \mathbf{x}$, and $k \in[N]$
Output: an approximation $\widehat{\mathbf{x}}$ to \mathbf{x}

1: $S=\operatorname{Identify}\left(\mathbf{y}_{\mathrm{id}}\right)$
Δ indices of significant entries
2: $\widehat{\mathbf{x}}=\operatorname{Estimate}\left(\mathcal{M}_{\text {est }}, \mathbf{y}_{\text {est }}, S, k\right)$
\triangleright estimate entries indexed by S

Our scheme: same algorithm, same $\mathcal{M}_{\text {est }}$, improved $\mathcal{M}_{\text {id }}$

Our identification matrix: subsample from a better binary matrix

Our scheme: same algorithm, same $\mathcal{M}_{\text {est }}$, improved $\mathcal{M}_{\text {id }}$

Iwen's and our $\mathcal{M}_{\mathrm{id}}$ is generated by
(i) randomly subsampling rows of "incoherent" binary matrix,
(ii) then taking "columnwise Kronecker product" with the "bit-tester"

Our $\mathcal{M}_{\mathrm{id}}$: subsample rows from a better incoherent binary matrix

Incoherent binary matrix

$\{0,1\}^{t \times N}$ is (w, α)-coherent matrix

1. each column contains at least $w 1$,
2. each pair of distinct columns has dot product at most α.

Questions:

1. Lower bound on t ?
2. Upper bound on t ?
3. Construction?
(2, 1)-coherent matrix with $N=6$

Our lower bound on the row count

$\{0,1\}^{t \times N}$ is (w, α)-coherent matrix

1. each column contains at least $w 1 s$,
2. each pair of distinct columns has dot product at most α.
3. Lower bound on t ? 2. Upper bound on t ? 3. Construction?

$$
\text { Our lower bound: } t=\Omega\left(w^{2} / \alpha\right)
$$

Proof idea (using coding theory):

- Bound must apply to the case with exactly w 1 s .
- Translate into binary constant-weight code: $(t, 2(w-\alpha), w)_{2}$-code of size N
- Rearrange classical bound by Johnson (1962): $t=\Omega\left(w^{2} / \alpha\right)$

Iwen's upper bound on row count and constructions

$$
t=\Omega\left(w^{2} / \alpha\right)
$$

1) Scheme 1 (best (P2), fastest recovery algorithm)

- Randomly generated itself
- $t=O\left(w^{2} / \alpha\right)$, order-optimal!

2) Scheme 2 (best (P3), fewest random bits)

- Explicit construction, based on RIP matrix by DeVore (2007)
- $t=O\left(w^{2}\right)$

	(w, α)-coherent matrix		Performance of scheme		
Scheme	Row count	Explicit	$(\mathrm{P} 1)$	$(\mathrm{P} 2)$	$(\mathrm{P} 3)$
Iwen's scheme 1	$O\left(w^{2} / \alpha\right)$	x	good	poor	
Iwen's scheme 2	$O\left(w^{2}\right)$	\checkmark	poor	good	

Combining the advantages?

Our matrix construction: explicit and order-optimal

Advantage in (w, α)-coherent matrix	Corresponding advantage(s) in scheme
Good row count	few measurements (P1), fast runtime (P2)
Explicit (structured)	few random bits (P3)

Combining the advantages?

	(w, α)-coherent matrix		Performance of scheme		
Scheme	Row count	Explicit	$(\mathrm{P} 1)$	$(\mathrm{P} 2)$	$(\mathrm{P} 3)$
Iwen's scheme 1	$O\left(w^{2} / \alpha\right)$	x	good	poor	
Iwen's scheme 2	$O\left(w^{2}\right)$	\checkmark	poor	good	
Our scheme	$O\left(w^{2} / \alpha\right)$	\checkmark	good	good	

Idea: based on disjunct matrix by Porat \& Rothschild (2011)

Conclusion and open question

$$
\mathcal{M}=\left[\frac{\mathcal{M}_{\mathrm{id}}}{\mathcal{M}_{\text {est }}}\right] \begin{aligned}
& \leftarrow \text { subsample from a better }(w, \alpha) \text {-coherent matrix } \\
& \leftarrow \text { same }
\end{aligned}
$$

$$
\begin{array}{ll}
\hline \text { (P1): number of measurements } & (P 2) \text { : recovery algorithm runtime } \\
(P 3): \text { number of random bits } & (P 4) \text { : error guarantee of } \widehat{x} \\
\hline
\end{array}
$$

Lower bounds	$k \log (N / k)$	$k \log (N / k)$	$?$	ℓ_{2} / ℓ_{2}
Paper	$\mathbf{(P 1)}$	$\mathbf{(P 2)}$	$\mathbf{(P 3)}$	$\mathbf{(P 4)}$
Cormode \& Muthukrishnan (2006)	$k \log ^{3} N$	$k \log ^{3} N$	$\Omega(N)$	ℓ_{2} / ℓ_{2}
Gilbert et al. (2012)	$k \log ^{3}(N / k)$	$k \log ^{\geq 2} N$	$\Omega(N)$	ℓ_{2} / ℓ_{2}
Nakos \& Song (2019)	$k \log (N / k)$	$k \log ^{2}(N / k)$	$\Omega(N)$	ℓ_{2} / ℓ_{2}
Scheme 1, Iwen (2014)	$k \log k \cdot \log N$	$k \log ^{2} k \cdot \log N$	$\Omega(N)$	ℓ_{2} / ℓ_{1}
Scheme 2, Iwen (2014)	$k \log ^{2} N$	$k \log ^{2} N$	$\log k \cdot \log (k \log N)$	ℓ_{2} / ℓ_{1}
Our scheme	$k \log k \cdot \log N$	$k \log k \cdot \log N$	$\log k \cdot \log (k \log N)$	ℓ_{2} / ℓ_{1}

The complexities are subject to O-factor, unless stated with Ω.

$$
\text { Question: (P1) and (P2) both } O(k \log (N / k)) \text { ? Impossible? }
$$

References

Ba, K. D., Indyk, P., Price, E. \& Woodruff, D. P. (2010), 'Lower bounds for sparse recovery', Proceedings of the 2010 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) pp. 1190-1197.

Cormode, G. \& Muthukrishnan, S. (2006), 'Combinatorial Algorithms for Compressed Sensing', International Colloquium on Structural Information and Communication Complexity pp. 280-294.

DeVore, R. A. (2007), 'Deterministic constructions of compressed sensing matrices', Journal of Complexity 23(4), 918-925.
Gilbert, A. C., Li, Y., Porat, E. \& Strauss, M. J. (2012), 'Approximate Sparse Recovery: Optimizing Time and Measurements', SIAM Journal on Computing 41(2), 436-453.

References (cont.)

Iwen, M. (2014), 'Compressed sensing with sparse binary matrices: Instance optimal error guarantees in near-optimal time', Journal of Complexity 30(1), 1 - 15.
Johnson, S. (1962), 'A new upper bound for error-correcting codes', IRE Transactions on Information Theory 8(3), 203-207.

Nakos, V. \& Song, Z. (2019), 'Stronger L2/L2 compressed sensing; without iterating', Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing pp. 289-297.

Porat, E. \& Rothschild, A. (2011), 'Explicit nonadaptive combinatorial group testing schemes', IEEE Transactions on Information Theory 57(12), 7982-7989.

