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Motivation for compressed sensing

Approximation X % Reconstruct \% Receive \

Conventional paradigm for data acquisition:
1. Measure full data (take picture with many pixels)

2. Compress (discard the small coefficients)

Wasteful: can we measure only the significant part?



Motivation for compressed sensing

Approximation X % Reconstruct \% Receive \

Compressed sensing paradigm for data acquisition:
1. & 2. Directly acquire compressed data

Wasteful: can we measure only the significant part?



Compressed sensing: formal setup

1 N 1

m 'Y = m M k<N
N | X significant

entries

« Wish to recover x € RN fully from m < N non-adaptive
linear measurements, i.e. Mx =y € R"”

 Impossible in general: underdetermined system

« x has k < N nonzero entries: exact recovery is possible

« Otherwise, give an approximation X to x containing the
k < N significant entries

Questions:
1. Good measurement matrix M?
2. Recovery algorithm (how to approximate x using y)?




Efficient compressed sensing schemes

’ 1. Measurement matrix M? 2. Recovery algorithm? ‘

Properties of a good scheme:

(P1) few measurements, ideally m = O(k polylogN)
(P2) fast recovery algorithm, ideally O(k polylog/N)
(P3) few random bits to construct M, ideally o(N)

(P4) X approximates x accurately via an “4,/44" error guarantee:

x —X||. < CkYP=19  min X —X
Ix— %], < minx— il

for some real constants C and 1 < g<p<?2

Lower bounds for nontrivial schemes by Ba et al. (2010) :
(P4) = measurements, runtime Q(k log(N/k))



(Non)uniform recovery

Nonuniform recovery: For each x € RN | generate a matrix M
randomly and independently. With high probability, the error
guarantee (P4) is satisfied.

Uniform recovery: Generate a matrix M randomly. With high
probability, the error guarantee (P4) is satisfied for all x € RV.



Principal previous schemes

(P1): number of measurements  (P2): recovery algorithm runtime

(P3): number of random bits (P4): error guarantee of X

Schemes good across (P1)—(P4) simultaneously?

Lower bounds | klog(N/k) [ klog(N/k) | ? [ &2/t |
Paper (P1) (P2) (P3) (P4)
Cormode & Muthukrishnan (2006) klog® N klog® N Q(N) 2
Gilbert et al. (2012) klog=2 N Q(N) £5/0>
Nakos & Song (2019) klog?(N/k) ) £5/0

Scheme 1, Iwen (2014) klogk - log N
Scheme 2, lwen (2014) klog® N

The complexities are subject to O-factor, unless stated with Q.
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Our scheme: combining advantages of Iwen’s schemes

(P1): number of measurements (P2): recovery algorithm runtime

(P3): number of random bits (P4): error guarantee of X

Schemes good across (P1)—(P4) simultaneously?

Lower bounds | klog(N/k) [ klog(N/k) | ? [ &/t |
Paper (P1) (P2) (P3) (P4)
Cormode & Muthukrishnan (2006) klog® N klog® N Q(N) £/0
Gilbert et al. (2012) klog(N/k) klog=2 N Q(N) £5/45
Nakos & Song (2019) k log(N/k) klog?(N/k) Q(N) 0/
Scheme 1, lwen (2014) klogk -logN | klogk -log N Q(N) 0 /4
Scheme 2, lwen (2014) klog® N klog® N log k - log (klog ) | £>/¢;
Our scheme klogk -log N | klogk -logN | logk - log (klog N) | £2/¢1

The complexities are subject to O-factor, unless stated with Q.



How to combine advantages of lwen’s schemes?

Measurement matrix:

M =

Mcst

Mid < identify indices of significant entries
< estimate values of entries

Algorithm 1 Recovery Algorithm

Input: M = [ Mia ],y [ Yid ] = MXx, and k € [N]
Mest Yest

Output: an approximation X to x

S entify(yid) D> indices of significant entries
X

1
2. X = Estlmate(/\/lest, Yest, S, k) D> estimate entries indexed by S

Our scheme: same algorithm, same M., improved Miq




Our identification matrix: subsample from a better binary matrix

Our scheme: same algorithm, same M., improved Miq

lwen's and our Mjq is generated by

(i) randomly subsampling rows of “incoherent” binary matrix,

(ii) then taking “columnwise Kronecker product” with the
“bit-tester”

Our Miq: subsample rows from a better incoherent binary matrix




Incoherent binary matrix

{0,1}**N is (w, a)-coherent matrix

1. each column contains at least w 1s,

2. each pair of distinct columns has dot product at most «.

at least two 1s

|

Questions:

1 1 0/0 0
1. Lower bound on t7? 1lolo 111 o
2. Upper bound on t7? 0(1|0 1/0 1
3. Construction? 00j1 0|11

[
dot product at most 1

(2, 1)-coherent matrix with N = 6



Our lower bound on the row count

{0,1}*N is (w, a)-coherent matrix

1. each column contains at least w 1s,

2. each pair of distinct columns has dot product at most «.

1. Lower bound on t? 2. Upper bound on t? 3. Construction?

Our lower bound: t = Q(w?/a)

Proof idea (using coding theory):

« Bound must apply to the case with exactly w 1s.

» Translate into binary constant-weight code:
(t,2(w — ), w)z-code of size N

« Rearrange classical bound by Johnson (1962): t = Q(w?/a)



Ilwen’s upper bound on row count and constructions

t =Q(w?/a)

1) Scheme 1 (best (P2), fastest recovery algorithm)
« Randomly generated itself

« t = O(w?/a), order-optimal!

2) Scheme 2 (best (P3), fewest random bits)
« Explicit construction, based on RIP matrix by DeVore (2007)

« t=0(w?)
(w, a)-coherent matrix | Performance of scheme
Scheme Row count | Explicit | (P1) ‘ (P2) (P3)
lwen's scheme 1 | O(w?/a) X good poor
lwen's scheme 2 O(w?) v poor good

’Combining the advantages?‘




Our matrix construction: explicit and order-optimal

Advantage in (w, a)-coherent matrix Corresponding advantage(s) in scheme

few measurements (P1), fast runtime (P2)
few random bits (P3)

Good row count
Explicit (structured)

Combining the advantages?

(w, a)-coherent matrix | Performance of scheme
Scheme Row count | Explicit | (P1) | (P2) | (P3)
lwen's scheme 1 | O(w?/a) X good poor
lwen's scheme 2 | O(w?) v poor good
Our scheme O(w?/a) v good good

Idea: based on disjunct matrix by Porat & Rothschild (2011)




Conclusion and open question

M Miq < subsample from a better (w, a)-coherent matrix
Mest | + same
(P1): number of measurements (P2): recovery algorithm runtime
(P3): number of random bits (P4): error guarantee of X
\ Lower bounds | klog(N/k) [ klog(N/k) | ? [ &/t |
Paper (P1) (P2) (P3) (P4)
Cormode & Muthukrishnan (2006) klog> N klog® N Q(N) £/
Gilbert et al. (2012) klog=2 N QN £/
Nakos & Song (2019) klog?(N/k)

Scheme 1, Iwen (2014) klogk - log N
Scheme 2, lwen (2014) klog® N
Our scheme klogk - log N

The complexities are subject to O-factor, unless stated with Q.

Question: (P1) and (P2) both O(klog(N/k)) ? Impossible?
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