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Small Challenge

Find all matrices R ∈ C4×4 which satisfy

(R ⊗ I )(I ⊗ R)(R ⊗ I ) = (I ⊗ R)(R ⊗ I )(I ⊗ R)

where I is the identity matrix on C2×2.

Reminder on Kronecker product ⊗: For S ∈ Ck×m, T ∈ Cl×n

S ⊗ T is the block matrix ∈ Ckl×mn

S ⊗ T =

s11T . . . s1mT
...

. . .
...

sk1T . . . skmT

 .

In particular, R ⊗ I and I ⊗ R are both C8×8.
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Find all matrices R ∈ C4×4 which satisfy

(R ⊗ I )(I ⊗ R)(R ⊗ I ) = (I ⊗ R)(R ⊗ I )(I ⊗ R)

where I is the identity matrix on C2×2.

Naive approach: Introduce 16 variables for the entries of R and
try matching the LHS and the RHS for each entry.

R =


x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16
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Find all matrices R ∈ C4×4 which satisfy

(R ⊗ I )(I ⊗ R)(R ⊗ I ) = (I ⊗ R)(R ⊗ I )(I ⊗ R)

where I is the identity matrix on C2×2.

Naive approach: Introduce 16 variables for the entries of R and
try matching the LHS and the RHS for each entry.

Problem: Matching each entry is equivalent to solving a
multivariate cubic polynomial. Matching all 64 entries is
equivalent to solving 64 cubic polynomials in 16 variables!

Solved by (Hietarinta 1993) with the help of a computer!
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Grand Challenge: YBE and the R-matrix

Find all matrices R ∈ Cn2×n2
which satisfy

(R ⊗ I )(I ⊗ R)(R ⊗ I ) = (I ⊗ R)(R ⊗ I )(I ⊗ R)

where I is the identity matrix on Cn×n.

Naive approach: solve n6 cubic polynomials in n4 variables.

Still open for n ≥ 3.

The equation

(R ⊗ I )(I ⊗ R)(R ⊗ I ) = (I ⊗ R)(R ⊗ I )(I ⊗ R)

is called the Yang-Baxter equation (YBE). Matrices R that satisfy
YBE are called R-matrices.
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(Drinfeld 1992): Set-theoretic Solutions

Let X be a non-empty set. Let r : X 2 → X 2 be a bijective map.

We write r × id as the map X 3 → X 3 such that

(r × id)(x , y , z) =
(
r (x , y), z

)
.

Similarly,

(id×r)(x , y , z) =
(
x , r(y , z)

)
.

The pair (X , r) is a set-theoretic solution of the YBE if it satisfies

(r × id)(id×r)(r × id) = (id×r)(r × id)(id×r).

Observe the similarity to the YBE:

(R ⊗ I )(I ⊗ R)(R ⊗ I ) = (I ⊗ R)(R ⊗ I )(I ⊗ R).
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Example: Flip Map

Let X be a non-empty set. We define r : X 2 → X 2 to be the map
r(x , y) = (y , x) for all x , y ∈ X .

For any x , y , z ∈ X ,

(r × id)(id×r)(r × id)(x , y , z) = (r × id)(id×r)(y , x , z)

= (r × id)(y , z , x)

= (z , y , x).

Similarly,

(id×r)(r × id)(id×r)(x , y , z) = (id×r)(r × id)(x , z , y)

= (id×r)(z , x , y)

= (z , y , x).

∴ (r × id)(id×r)(r × id) = (id×r)(r × id)(id×r).
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Constructing R-matrix from Set-theoretic Solution
Example: We construct the R-matrix from r(x , y) = (y , x) on
X = {x1, x2}. Consider
r(x1, x1) = (x1, x1) =⇒ R11

11 = 1,
r(x1, x2) = (x2, x1) =⇒ R21

12 = 1 . . .

R =



11 12 21 22

11 R11
11 R12

11 R21
11 R22

11

12 R11
12 R12

12 R21
12 R22

12

21 R11
21 R12

21 R21
21 R22

21

22 R11
22 R12

22 R21
22 R22

22


=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



General case: Given a solution (X , r) where X = {x1, . . . , xn}.
Construct an n2 × n2 R-matrix with indices 11, 12, . . . , 1n,
21, . . . , 2n, . . . , n1, . . . , nn such that Rkl

ij = 1 if r(xi , xj) = (xk , xl),
and 0 otherwise.
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Non-degenerate Involutive Set-theoretic Solution

We say a solution (X , r) is involutive if r2 = idX 2 , i.e.

for all x , y ∈ X , r
(
r(x , y)

)
= (x , y).

Write r(x , y) =
(
f (x , y), g(x , y)

)
where f (x ,−), g(−, y) are maps

X → X . We say (X , r) is non-degenerate if

for all x , y ∈ X , f (x ,−), g(−, y) are bijective.

Notation: We will denote non-degenerate involutive set-theoretic
solutions of YBE by solutions for convenience.
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Entering Left Braces

Introduced in (Rump 2007) to help study solutions of the YBE. A
left brace is a triple (B,+, ◦) satisfying axioms

(B1) (B,+) is an abelian group;

(B2) (B, ◦) is a group;

(B3) a ◦ (b + c) + a = a ◦ b + a ◦ c .

Example: Define (B,+) = (Zp,+). Define (B, ◦) such that

a ◦ b = a + b.

Call this a trivial brace.
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Left Braces Yield Solutions

Notation: Write b−1 as the inverse of b in (B, ◦).

Theorem (Rump 2007): Let B be a left brace. Define a map
rB : B2 → B2 as

rB(a, b) = (a ◦ b − a, z ◦ a− z)

where z = (a ◦ b − a)−1. Then (B, rB) is a solution of the YBE.

Significance: Left braces give us solutions!
Notation: We call the pair (B, rB) the associated solution of B.
Example: Any trivial brace. Note that the associated r is flip map.

r(a, b) = (a + b − a, b−1 + a− b−1) = (b, a).
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Finding all Left Braces =⇒ Finding all Solutions
Theorem (Cedó, Gateva-Ivanova & Smoktunowicz 2017):
Let (X , r) be a finite solution of the YBE. Then we can construct a
(finite) left brace B ⊇ X such that its associated map rB : B2 → B2

satisfies
rB |X2

= r .

Significance: Any finite solution (X , r) is embedded in some finite
left brace (B, rB)!

(Cedó, Jespers & Del Rio 2010): The task of finding all finite
solutions can be broken down into two sub-problems:

Problem 1: Classify all finite left braces.

Problem 2: For each left brace B, classify all embedded
subsolutions (X , rB |X2

).

Problem 2 is solved by (Bachiller, Cedó & Jespers 2016)!
∴ Finding all solutions is reduced to Problem 1!
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Braces: Crossover of Groups and Rings (I)

I A left brace (B,+, ◦) relates two groups (B,+) and (B, ◦)
through

a ◦ (b + c) + a = a ◦ b + a ◦ c .

I A left brace (B,+, ◦) can be equipped with the operation ∗
defined by

a ∗ b = a ◦ b − a− b.

It can be checked that ∗ is left-distributive over +. That is,

a ∗ (b + c) = a ∗ b + a ∗ c

for a, b, c ∈ B. Then (B,+, ∗) satisfies all ring axioms except
I Right-distributivity
I Associativity

Intuitively, you can say (B,+, ∗) is “like” a Jacobson radical
ring with these two axioms being relaxed.
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Good Artists Copy, Great Artists Steal? (I)

Basic definitions with analogues in group or ring theory:

I Subbrace

I Morphisms

I Ideals

I Left/Right Ideals

I Quotient braces

I Direct Product

I Semidirect Product
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Good Artists Copy, Great Artists Steal? (II)

Well-studied concepts with analogues in group or ring theory:

I Solvable: there exists a sequence of ideals
{0} = B0 ⊆ B1 ⊆ · · · ⊆ Bm = B with Bi/Bi−1 trivial

I Prime: if I ∗ J = 0 for I , J ideals of B, then one of I , J is zero

I Semiprime: if I ∗ I = 0 for I an ideal of B, then I = {0}
I Nil: for all b ∈ B, there is n ∈ N such that bn = 0

I Left nil: (b ∗ (b ∗ . . . (b ∗ (b ∗ (b ∗ b) . . . ) = 0

I Right nil: (· · · (b ∗ b) ∗ b) ∗ b) · · · ∗ b) ∗ b) = 0

I Nilpotent: there is n ∈ N such that Bn = {0}
I Left nilpotent: (B ∗ (B ∗ . . . (B ∗ (B ∗ (B ∗ B) . . . ) = {0}
I Right nilpotent: (· · · (B ∗ B) ∗ B) ∗ B) · · · ∗ B) ∗ B) = {0}

Solvable important for classification of groups.
(Semi) prime, nil, nilpotent important for classification of rings.
Analogues important for classification of left braces?
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Good Artists Copy, Great Artists Steal? (III)

I A semiprime ring R is a subdirect product of prime rings.
(Wedderburn–Artin Theorem)

I A semiprime left brace B is a subdirect product of prime left
braces (Konovalov, Smoktunowicz & Vendramin 2018).

Statement in rings =⇒ Analogous statement in left braces?

I Groups G ,H are solvable if and only if their semidirect
product is solvable.

I Left braces G ,H are solvable if and only if their semidirect
product is solvable (new result).

Statement in groups =⇒ Analogous statement in left braces?
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Too Good to be True

Problem: Ring-theoretic techniques may not work as they often
rely on right-distributivity or/and associativity of ∗.

Recall: Left brace is like Jacobson radical ring but with
right-distributivity and associativity of ∗ relaxed.

General questions: To what extent can we mimic? If so, is it
straightforward or tricky? If not, why?
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Right Distributivity vs Associativity

Recall: Left brace is like Jacobson radical ring but with
right-distributivity or associativity of ∗ relaxed.

Question: Are both of these axioms essential for a left brace to be
a ring?

Answer: Exactly one is sufficient.

(B,+, ∗) right-distributive =⇒ (B,+, ∗) is a ring (Rump 2007).

(B,+, ∗) associative =⇒ (B,+, ∗) is a ring (Lau 2018).
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Probabilistic and Combinatorial Brace Theory?

5/8 Theorem in Probabilistic Group Theory: Randomly choose
two elements of a finite group. If the probability that they
commute is bigger than 5/8, the group is abelian!

Approximate subgroup in Arithmetic Combinatorics: Finite subsets
that are almost closed under products/ behaves like a subgroup
“up to a constant error”.

Any similar interesting and meaningful concept/statements for Left
Braces?
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Thank you for listening!
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