From the YBE to the Left Braces

Ivan Lau
(Joint Work with Patrick Kinnear and Dora Puljić)

University of Edinburgh

Groups, Rings and Associated Structures 2019 June 9-15 2019, Spa, Belgium

Small Challenge

Find all matrices $R \in \mathbb{C}^{4 \times 4}$ which satisfy

$$
(R \otimes I)(I \otimes R)(R \otimes I)=(I \otimes R)(R \otimes I)(I \otimes R)
$$

where I is the identity matrix on $\mathbb{C}^{2 \times 2}$.
Reminder on Kronecker product $\otimes:$ For $S \in \mathbb{C}^{k \times m}, T \in \mathbb{C}^{1 \times n}$ $S \otimes T$ is the block matrix $\in \mathbb{C}^{k l \times m n}$

$$
S \otimes T=\left[\begin{array}{ccc}
s_{11} T & \ldots & s_{1 m} T \\
\vdots & \ddots & \vdots \\
s_{k 1} T & \ldots & s_{k m} T
\end{array}\right]
$$

In particular, $R \otimes I$ and $I \otimes R$ are both $\mathbb{C}^{8 \times 8}$.

Small Challenge

Find all matrices $R \in \mathbb{C}^{4 \times 4}$ which satisfy

$$
(R \otimes I)(I \otimes R)(R \otimes I)=(I \otimes R)(R \otimes I)(I \otimes R)
$$

where I is the identity matrix on $\mathbb{C}^{2 \times 2}$.
Naive approach: Introduce 16 variables for the entries of R and try matching the LHS and the RHS for each entry.

$$
R=\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{5} & x_{6} & x_{7} & x_{8} \\
x_{9} & x_{10} & x_{11} & x_{12} \\
x_{13} & x_{14} & x_{15} & x_{16}
\end{array}\right]
$$

Small Challenge

Find all matrices $R \in \mathbb{C}^{4 \times 4}$ which satisfy

$$
(R \otimes I)(I \otimes R)(R \otimes I)=(I \otimes R)(R \otimes I)(I \otimes R)
$$

where I is the identity matrix on $\mathbb{C}^{2 \times 2}$.
Naive approach: Introduce 16 variables for the entries of R and try matching the LHS and the RHS for each entry.

Problem: Matching each entry is equivalent to solving a multivariate cubic polynomial. Matching all 64 entries is equivalent to solving $\mathbf{6 4}$ cubic polynomials in $\mathbf{1 6}$ variables!

Solved by (Hietarinta 1993) with the help of a computer!

Grand Challenge: YBE and the R-matrix

Find all matrices $R \in \mathbb{C}^{n^{2} \times n^{2}}$ which satisfy

$$
(R \otimes I)(I \otimes R)(R \otimes I)=(I \otimes R)(R \otimes I)(I \otimes R)
$$

where I is the identity matrix on $\mathbb{C}^{n \times n}$.
Naive approach: solve n^{6} cubic polynomials in n^{4} variables.
Still open for $n \geq 3$.
The equation

$$
(R \otimes I)(I \otimes R)(R \otimes I)=(I \otimes R)(R \otimes I)(I \otimes R)
$$

is called the Yang-Baxter equation (YBE). Matrices R that satisfy YBE are called \boldsymbol{R}-matrices.

(Drinfeld 1992): Set-theoretic Solutions

Let X be a non-empty set. Let $r: X^{2} \rightarrow X^{2}$ be a bijective map.
We write $r \times$ id as the map $X^{3} \rightarrow X^{3}$ such that

$$
(r \times \mathrm{id})(x, y, z)=(r(x, y), z)
$$

Similarly,

$$
(\mathrm{id} \times r)(x, y, z)=(x, r(y, z))
$$

The pair (X, r) is a set-theoretic solution of the YBE if it satisfies

$$
(r \times \mathrm{id})(\mathrm{id} \times r)(r \times \mathrm{id})=(\mathrm{id} \times r)(r \times \mathrm{id})(\mathrm{id} \times r) .
$$

Observe the similarity to the YBE:

$$
(R \otimes I)(I \otimes R)(R \otimes I)=(I \otimes R)(R \otimes I)(I \otimes R)
$$

Example: Flip Map

Let X be a non-empty set. We define $r: X^{2} \rightarrow X^{2}$ to be the map $r(x, y)=(y, x)$ for all $x, y \in X$.

For any $x, y, z \in X$,

$$
\begin{aligned}
(r \times \mathrm{id})(\mathrm{id} \times r)(r \times \mathrm{id})(x, y, z) & =(r \times \mathrm{id})(\mathrm{id} \times r)(y, x, z) \\
& =(r \times \mathrm{id})(y, z, x) \\
& =(z, y, x) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
(\mathrm{id} \times r)(r \times \mathrm{id})(\mathrm{id} \times r)(x, y, z) & =(\mathrm{id} \times r)(r \times \mathrm{id})(x, z, y) \\
& =(\mathrm{id} \times r)(z, x, y) \\
& =(z, y, x) . \\
\therefore(r \times \mathrm{id})(\mathrm{id} \times r)(r \times \mathrm{id})= & (\mathrm{id} \times r)(r \times \mathrm{id})(\mathrm{id} \times r) .
\end{aligned}
$$

Constructing R-matrix from Set-theoretic Solution

Example: We construct the R-matrix from $r(x, y)=(y, x)$ on $X=\left\{x_{1}, x_{2}\right\}$. Consider

$$
\begin{aligned}
& r\left(x_{1}, x_{1}\right)=\left(x_{1}, x_{1}\right) \Longrightarrow R_{11}^{11}=1 \\
& r\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right) \Longrightarrow R_{12}^{21}=1 \ldots
\end{aligned}
$$

$$
R=\begin{gathered}
11 \\
\\
\\
\\
21
\end{gathered}\left[\begin{array}{cccc}
11 & 12 & 21 & 22 \\
R_{11}^{11} & R_{11}^{12} & R_{11}^{21} & R_{11}^{22} \\
R_{12}^{11} & R_{12}^{12} & R_{12}^{21} & R_{12}^{22} \\
R_{21}^{11} & R_{21}^{12} & R_{21}^{21} & R_{21}^{22} \\
R_{22}^{11} & R_{22}^{12} & R_{22}^{21} & R_{22}^{22}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Constructing R-matrix from Set-theoretic Solution

Example: We construct the R-matrix from $r(x, y)=(y, x)$ on $X=\left\{x_{1}, x_{2}\right\}$. Consider
$r\left(x_{1}, x_{1}\right)=\left(x_{1}, x_{1}\right) \Longrightarrow R_{11}^{11}=1$,
$r\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right) \Longrightarrow R_{12}^{21}=1 \ldots$
$R={ }_{21}{ }_{21}\left[\begin{array}{cccc}11 & 12 & 21 & 22 \\ R_{11}^{11} & R_{11}^{12} & R_{11}^{21} & R_{11}^{22} \\ R_{12}^{11} & R_{12}^{12} & R_{12}^{21} & R_{12}^{22} \\ R_{21}^{11} & R_{21}^{12} & R_{21}^{21} & R_{21}^{22} \\ R_{22}^{11} & R_{22}^{12} & R_{22}^{21} & R_{22}^{22}\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

General case: Given a solution (X, r) where $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Construct an $n^{2} \times n^{2} R$-matrix with indices $11,12, \ldots, 1 n$, $21, \ldots, 2 n, \ldots, n 1, \ldots, n n$ such that $R_{i j}^{k l}=1$ if $r\left(x_{i}, x_{j}\right)=\left(x_{k}, x_{l}\right)$, and 0 otherwise.

Non-degenerate Involutive Set-theoretic Solution

We say a solution (X, r) is involutive if $r^{2}=\mathrm{id}_{X^{2}}$, i.e.

$$
\text { for all } x, y \in X, r(r(x, y))=(x, y) \text {. }
$$

Write $r(x, y)=(f(x, y), g(x, y))$ where $f(x,-), g(-, y)$ are maps $X \rightarrow X$. We say (X, r) is non-degenerate if

$$
\text { for all } x, y \in X, f(x,-), g(-, y) \text { are bijective. }
$$

Notation: We will denote non-degenerate involutive set-theoretic solutions of YBE by solutions for convenience.

Entering Left Braces

Introduced in (Rump 2007) to help study solutions of the YBE. A left brace is a triple $(B,+, \circ)$ satisfying axioms
(B1) $(B,+)$ is an abelian group;
(B2) (B, \circ) is a group;
(B3) $a \circ(b+c)+a=a \circ b+a \circ c$.
Example: Define $(B,+)=\left(\mathbb{Z}_{p},+\right)$. Define (B, \circ) such that

$$
a \circ b=a+b
$$

Call this a trivial brace.

Left Braces Yield Solutions

Notation: Write b^{-1} as the inverse of b in (B, \circ).
Theorem (Rump 2007): Let B be a left brace. Define a map $r_{B}: B^{2} \rightarrow B^{2}$ as

$$
r_{B}(a, b)=(a \circ b-a, z \circ a-z)
$$

where $z=(a \circ b-a)^{-1}$. Then $\left(B, r_{B}\right)$ is a solution of the YBE.

Significance: Left braces give us solutions!
Notation: We call the pair $\left(B, r_{B}\right)$ the associated solution of B. Example: Any trivial brace. Note that the associated r is flip map.

$$
r(a, b)=\left(a+b-a, b^{-1}+a-b^{-1}\right)=(b, a)
$$

Finding all Left Braces \Longrightarrow Finding all Solutions

Theorem (Cedó, Gateva-Ivanova \& Smoktunowicz 2017):
Let (X, r) be a finite solution of the YBE. Then we can construct a (finite) left brace $B \supseteq X$ such that its associated map $r_{B}: B^{2} \rightarrow B^{2}$ satisfies

$$
r_{\left.B\right|_{x^{2}}}=r
$$

Significance: Any finite solution (X, r) is embedded in some finite left brace $\left(B, r_{B}\right)$!

Finding all Left Braces \Longrightarrow Finding all Solutions

Theorem (Cedó, Gateva-Ivanova \& Smoktunowicz 2017):
Let (X, r) be a finite solution of the YBE. Then we can construct a (finite) left brace $B \supseteq X$ such that its associated map $r_{B}: B^{2} \rightarrow B^{2}$ satisfies

$$
r_{\left.B\right|_{x^{2}}}=r
$$

Significance: Any finite solution (X, r) is embedded in some finite left brace $\left(B, r_{B}\right)$!
(Cedó, Jespers \& Del Rio 2010): The task of finding all finite solutions can be broken down into two sub-problems:

Problem 1: Classify all finite left braces.
Problem 2: For each left brace B, classify all embedded subsolutions $\left(X, r_{\left.B\right|_{X^{2}}}\right)$.

Finding all Left Braces \Longrightarrow Finding all Solutions

Theorem (Cedó, Gateva-Ivanova \& Smoktunowicz 2017):
Let (X, r) be a finite solution of the YBE. Then we can construct a (finite) left brace $B \supseteq X$ such that its associated map $r_{B}: B^{2} \rightarrow B^{2}$ satisfies

$$
r_{\left.B\right|_{x^{2}}}=r
$$

Significance: Any finite solution (X, r) is embedded in some finite left brace $\left(B, r_{B}\right)$!
(Cedó, Jespers \& Del Rio 2010): The task of finding all finite solutions can be broken down into two sub-problems:

Problem 1: Classify all finite left braces.
Problem 2: For each left brace B, classify all embedded subsolutions $\left(X, r_{\left.B\right|_{X^{2}}}\right)$.

Problem 2 is solved by (Bachiller, Cedó \& Jespers 2016)!
\therefore Finding all solutions is reduced to Problem 1!

Braces: Crossover of Groups and Rings (I)

- A left brace $(B,+, \circ)$ relates two groups $(B,+)$ and (B, \circ) through

$$
a \circ(b+c)+a=a \circ b+a \circ c .
$$

- A left brace $(B,+, \circ)$ can be equipped with the operation $*$ defined by

$$
a * b=a \circ b-a-b
$$

It can be checked that $*$ is left-distributive over + . That is,

$$
a *(b+c)=a * b+a * c
$$

for $a, b, c \in B$. Then $(B,+, *)$ satisfies all ring axioms except

- Right-distributivity
- Associativity

Intuitively, you can say $(B,+, *)$ is "like" a Jacobson radical ring with these two axioms being relaxed.

Good Artists Copy, Great Artists Steal? (I)

Basic definitions with analogues in group or ring theory:

- Subbrace
- Morphisms
- Ideals
- Left/Right Ideals
- Quotient braces
- Direct Product
- Semidirect Product

Good Artists Copy, Great Artists Steal? (II)

Well-studied concepts with analogues in group or ring theory:

- Solvable: there exists a sequence of ideals

$$
\{0\}=B_{0} \subseteq B_{1} \subseteq \cdots \subseteq B_{m}=B \text { with } B_{i} / B_{i-1} \text { trivial }
$$

- Prime: if $I * J=0$ for I, J ideals of B, then one of I, J is zero
- Semiprime: if $I * I=0$ for I an ideal of B, then $I=\{0\}$
- Ail. for-all $b \in B$, there is $n \in \mathbb{N}$ such that $b^{n}-0$
- Left nil: $(b *(b * \ldots(b *(b *(b * b) \ldots)=0$
- Right nil: $(\cdots(b * b) * b) * b) \cdots * b) * b)=0$
- Alipotent. there is $n \in \mathbb{N}$ such that $B^{n}-\{0\}$
- Left nilpotent: $(B *(B * \ldots(B *(B *(B * B) \ldots)=\{0\}$
- Right nilpotent: $(\cdots(B * B) * B) * B) \cdots * B) * B)=\{0\}$

Solvable important for classification of groups.
(Semi) prime, nil, nilpotent important for classification of rings. Analogues important for classification of left braces?

Good Artists Copy, Great Artists Steal? (III)

- A semiprime ring R is a subdirect product of prime rings. (Wedderburn-Artin Theorem)
- A semiprime left brace B is a subdirect product of prime left braces (Konovalov, Smoktunowicz \& Vendramin 2018).

Statement in rings \Longrightarrow Analogous statement in left braces?

- Groups G, H are solvable if and only if their semidirect product is solvable.
- Left braces G, H are solvable if and only if their semidirect product is solvable (new result).

Statement in groups \Longrightarrow Analogous statement in left braces?

Too Good to be True

Problem: Ring-theoretic techniques may not work as they often rely on right-distributivity or/and associativity of $*$.

Recall: Left brace is like Jacobson radical ring but with right-distributivity and associativity of $*$ relaxed.

General questions: To what extent can we mimic? If so, is it straightforward or tricky? If not, why?

Right Distributivity vs Associativity

Recall: Left brace is like Jacobson radical ring but with right-distributivity or associativity of $*$ relaxed.

Question: Are both of these axioms essential for a left brace to be a ring?

Answer: Exactly one is sufficient.
$(B,+, *)$ right-distributive $\Longrightarrow(B,+, *)$ is a ring (Rump 2007).

$$
(B,+, *) \text { associative } \Longrightarrow(B,+, *) \text { is a ring (Lau 2018). }
$$

Probabilistic and Combinatorial Brace Theory?

5/8 Theorem in Probabilistic Group Theory: Randomly choose two elements of a finite group. If the probability that they commute is bigger than $5 / 8$, the group is abelian!

Approximate subgroup in Arithmetic Combinatorics: Finite subsets that are almost closed under products/ behaves like a subgroup "up to a constant error".

Any similar interesting and meaningful concept/statements for Left Braces?

Thank you for listening!

References I

Bachiller, D., Cedó, F. \& Jespers, E. (2016), 'Solutions of the Yang-Baxter equation associated with a left brace', Journal of Algebra 463, $80-102$.
Cedó, F., Gateva-Ivanova, T. \& Smoktunowicz, A. (2017), 'On the Yang-Baxter equation and left nilpotent left braces', Journal of Pure and Applied Algebra 221(4), 751-756.
Cedó, F., Jespers, E. \& Del Rio, A. (2010), 'Involutive Yang-Baxter groups', Transactions of the American Mathematical Society 362(5), 2541-2558.
Drinfeld, V. (1992), On some unsolved problems in quantum group theory, in P. P. Kulish, ed., 'Quantum Groups', Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1-8.
Hietarinta, J. (1993), 'Solving the two-dimensional constant quantum Yang-Baxter equation', Journal of Mathematical Physics 34, 1725-1756.

References II

Konovalov, A., Smoktunowicz, A. \& Vendramin, L. (2018), 'On skew braces and their ideals', Experimental Mathematics pp. 1-10.
Lau, I. (2018), 'Left Brace With The Operation * Associative Is A Two-sided Brace', arXiv: 1811.04894v2 [math.RA].
Rump, W. (2007), 'Braces, radical rings, and the quantum Yang-Baxter equation', Journal of Algebra 307(1), 153 - 170.

